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What We Do – Centre for Healthcare Engineering

• Data-driven research to improve system efficiency 
and enhance patient care

• Research Areas:

– Policy and Strategy

– Healthcare Operations

– Medical Technologies

– Information Engineering

– Human Factors
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What We Do – Applied Optimization Laboratory

• Quantitative methods for decision making

– Optimization

– Machine Learning 

– Simulation

• Applications

– Healthcare

– Energy

– Sports
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Today’s topics

• Understand where (and when) OHCA risk is…

– Data analytics

– Simulation

– Stochastic modeling

• …and then optimize AED placements accordingly

– Integer optimization (robust, stochastic)

– Queuing

– Routing
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Risk

• Spatial risk by location type (Ann Emerg Med 2013)

• Spatial risk in enclosed pedestrian walkways (Resuscitation
2017)

• Spatiotemporal risk by location type (Circulation 2017)
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Toronto’s PATH System
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Results: Spatial Risk and OHCA Characteristics
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Coffee, Tea or an AED?

• How many cardiac arrests occurred within 100 m of 
certain businesses and public points of interest when 
those locations were actually open?
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Results: Top 10 List
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Optimization

• First optimization model (Circulation 2013)

• Effect of varying coverage radius (Resuscitation 2013)

• Optimization with coverage decay (Manag Sci 2016)

• Spatiotemporal optimization (JACC 2016)

• Optimization with uncertain OHCA locations (Oper Res 2017)

• AED optimization in high-rises (Prehosp Emerg Care 2017)

• Drone-delivered AEDs (Circulation 2017)

• Generalizability of spatiotemporal optimization (Resuscitation
2018)
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A First Optimization Model

• Data

– Five years of OHCAs

– Locations of existing, 
registered AEDs

– Large database of 
public buildings

• Optimization model to place AEDs to maximize 
cardiac arrest coverage

• Compared with population-guided approach to AED 
placement based on estimated daytime population 
spread across buildings in a census tract
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10-Fold Cross Validation 
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10-Fold Cross Validation 
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10-Fold Cross Validation 
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10-Fold Cross Validation 
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Results

• Optimization approach consistently outperforms 
population-guided approach
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Registered AEDs in Toronto
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Where Do You Place the Next 30 AEDs?
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Optimization

• First optimization model (Circulation 2013)

• Effect of varying coverage radius (Resuscitation 2013)

• Optimization with coverage decay (Manag Sci 2016)

• Spatiotemporal optimization (JACC 2016)

• Optimization with uncertain OHCA locations (Oper Res 2017)

• AED optimization in high-rises (Prehosp Emerg Care 2017)

• Drone-delivered AEDs (Circulation 2017)

• Generalizability of spatiotemporal optimization (Resuscitation
2018)
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Spatiotemporal Optimization Model

• Most studies focus on spatial factors; limited study of 
temporal factors

– American Heart Association guidelines: place AEDs “in 
public locations where there is a relatively high likelihood 
of witnessed cardiac arrest”

• Two related questions:

– How much is AED availability overestimated when we do 
not consider building hours of operation?

– How much better can we do if we optimize AED locations 
considering temporal information?
• Spatiotemporal optimization model
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Methods

• Data

– Eight years of historical cardiac arrest data

– Location and hours of operation for registered AEDs

• Analysis

– Assumed 24/7 coverage: number of cardiac arrests that 
occur within 100 m of AED

– Actual coverage: number of cardiac arrests that occur 
within 100 m of AED and when the AED is available

– Coverage loss = (assumed 24/7 – actual)
assumed 24/7
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Cardiac Arrests

Characteristic*
Total

(n=2440)
Daytime 
(n=1252)

Evening  
(n=840)

Night 
(n=348)

Average age ±SD 59.0±17.5 60.3±17.9 58.9±16.8 54.6±16.9

Male 58.9±16.7 60.1±17.2 58.7±16.1 55.1±15.7

Female 59.4±20.6 61.1±21.0 60.3±19.5 52.6±20.7

Male sex, n (%) 1979 (81.1) 1021 (81.5) 686 (81.7) 272 (78.2)

Witnessed by bystander, n (%) 1142 (46.8) 590 (47.1) 446 (53.1) 106 (30.5)
Received bystander CPR, n (%) 1019 (41.8) 533 (42.6) 371 (44.2) 115 (33.0)
Bystander applied AED, n (%) 191 (7.8) 96 (7.7) 75 (8.9) 20 (5.8)
Ambulance response interval,

5.88 (2.68) 5.75 (2.60) 5.82 (2.62) 6.45 (2.58)
median (IQR), minutes

Initial cardiac rhythm, n (%)

Shockable 868 (35.6) 465 (37.1) 327 (38.9) 76 (21.8)

Not Shockable 1504 (61.6) 747 (59.7) 494 (58.8) 263 (75.6)

Survival to discharge, n (%) 361 (14.8) 196 (15.7) 129 (15.4) 36 (10.3)

Results: Characteristics of Cardiac Arrests
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Results: AED Availability in Toronto 
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Coverage loss when measuring actual coverage 
versus assumed 24/7 coverage
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Results: Coverage Loss by Location Type

29

Location Type

Number of 
locations 

with an AED,
n (%)

OHCAs covered
Coverage 
loss (%)

Assumed 24/7 
coverage,

n

Actual 
coverage,

n
School 190 (25.8) 68 41 39.7
Recreation/sports facility 165 (22.4) 89 56 37.1
Transportation facility 93 (12.6) 144 144 0.0
Industrial facility 62 (8.4) 28 17 39.3
Office 54 (7.3) 56 36 35.7
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Location Type Coverage Loss

Schools 39.7% 40.8%

Transportation 
Facilities/Train Stations

0.0% 0.0%

Offices 35.7% 49.0%

Recreation/Sports Facilities 37.1% 12.5%

Discussion: Toronto vs. Copenhagen
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Toronto Copenhagen (Hansen et al*)

Overall  coverage loss 21.5% 33.5%

Percent of AEDs available 
24/7

26.5% 9.1%

Daytime coverage loss 5.7% 4.1% 

Evening, night, and 
weekends coverage loss

31.6% 53.4%

*Hansen, C. M., Wissenberg, M., Weeke, P., Ruwald, M. H., Lamberts, M., Lippert, F. K., … Folke, F. (2013). Automated external 
defibrillators inaccessible to more than half of nearby cardiac arrests in public locations during evening, nighttime, and weekends. 
Circulation, 128(20), 2224–31. doi:10.1161/CIRCULATIONAHA.113.003066
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Spatiotemporal Optimization Model

• What is the improvement potential if we deploy 
“prospective” AEDs with knowledge of building 
hours?

• Compare an optimization model that combines both 
spatial and temporal information with one that uses 
spatial information only
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Methods

• Data

– Eight years of historical cardiac arrest data

– Location and hours of operation for registered AEDs

– Location and hours of operation for candidate AED sites

• Model

– Spatial (basic) model: Place AEDs in N locations to 
maximize assumed 24/7 coverage of cardiac arrests

– Spatiotemporal model: Place AEDs in N locations to 
maximize actual coverage of cardiac arrests

– 10-fold cross validation (90/10 training/testing)
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Model Comparison 

33
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Results: Spatiotemporal Optimization
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Results: Coverage Gain Due to Spatiotemporal Opt.
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• Relative coverage gain = (spatiotemporal – spatial)
spatial

• Overall coverage gain: weighted average over N
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Coverage loss when measuring actual coverage 
versus assumed 24/7 coverage
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Coverage loss when measuring actual coverage 
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OHCA Category
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Optimization

• First optimization model (Circulation 2013)

• Effect of varying coverage radius (Resuscitation 2013)

• Optimization with coverage decay (Manag Sci 2016)

• Spatiotemporal optimization (JACC 2016)

• Optimization with uncertain OHCA locations (Oper Res 2017)

• AED optimization in high-rises (Prehosp Emerg Care 2017)

• Drone-delivered AEDs (Circulation 2017)

• Generalizability of spatiotemporal optimization (Resuscitation
2018)
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Vertical AED Placement

• Almost all studies have 
focused on “2D” problem

• Response delays and 
lower survival in high-
rises

• No guidelines on vertical 
AED placement
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Elevator vs. Lobby?

40
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Optimization

• First optimization model (Circulation 2013)
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• AED optimization in high-rises (Prehosp Emerg Care 2017)
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Drone-Delivered AEDs

• Most OHCAs occur in private locations

• Drones are being tested to deliver everything from 
pizza to medicine

• Specialized AED-drones exist

• Where would you put drone bases?

• How many drones would you need?

• How do drones compare to existing EMS response?
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Defibrillator Drone
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Objective

The goal of this study is to develop a mathematical 
approach that determines:

1. the number and location of drone bases, and

2. the number of the drones required at each base,

to meet any AED arrival time goal in any geographical 
area.
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Data

• 8 regions

– 7.5 million people

– 10,000 sq. miles

• 53,702 OHCAs from 
2006 to 2014

– 86% private location

– 7.8% survival

• 538 paramedic, fire, 
and police stations
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Mathematical Model

• Two-stage mathematical model:

1. Optimization model to determine base locations to 
cover f% of historical OHCAs in under t minutes

2. Queuing model to determine number of drones at 
each base so there is 99% chance drone is free 
when a OHCA occurs inside that base’s catchment 
area
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Analysis

• Determine the number and location of drones to 
improve the historical median 911 response by 1, 2, 
and 3 minutes

• Compare region-specific drone networks with 
coordinated drone-network integrating all eight 
regions
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Results: An Example Drone Network

• 23 bases, 37 drones:

– Reduce median response 
time by 1 minute

– Reduce 90th percentile 
response time by over 6 min 
in some regions

– Drone arrives ahead of EMS 
2/3 of the time

1 drone per base

2 drones per base
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Drone Network Performance

Goal

Region

Toronto Durham Simcoe Muskoka Peel Hamilton Halton York All

Number of bases 

(number of total 

drones)

1 min. faster 3 (6) 3 (6) 5 (6) 3 (3) 2 (4) 1 (2) 3 (4) 3 (6) 23 (37)

2 min. faster 6 (12) 5 (7) 11 (12) 5 (5) 4 (8) 1 (2) 3 (4) 5 (7) 40 (57)

3 min. faster 13 (26) 14 (16) 20 (20) 6 (6) 10 (11) 5 (7) 5 (5) 8 (9) 81 (100)

Proportion of 

cases where drone 

AED arrives prior 

to 911 (%)

1 min. faster 69.0 64.2 65.0 76.3 71.7 54.1 64.4 63.9 67.9

2 min. faster 87.6 82.1 78.6 79.7 84.7 75.3 73.9 79.5 84.6

3 min. faster 96.1 94.6 89.6 84.2 94.6 92.2 92.7 89.2 94.6
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Impact on Response Time Distribution

6 min 43s 10 min 34s

Toronto (Urban) Muskoka (Rural)

1 min 1 min

2 min

3 min

2 min

3 min
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Results: Equity vs. Efficiency
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Region-specific 
1 min. faster

Integrated 
1 min. faster

40% fewer 
drones
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Summary of Past/Current Work

• Data-driven mathematical models for AED placement 
or delivery

– Models that improve accessibility or consider bystander 
response

– Utilizing drones to deliver AEDs, other medicines

– Application to new contexts (LMICs, indoor networks)
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Going Forward

• Continue to be interested in innovative applications 
of optimization in emergency response

– New problem contexts
• Integrating static and moving AEDs

• Simulated clinical trials

• High-rise response

• Traffic accidents

• Centralized decision-making systems

– New technologies
• Optimal notification radius for mobile app-based responders

• Analysis of wearables data

• OHCA recognition via security systems
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Thank You!
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